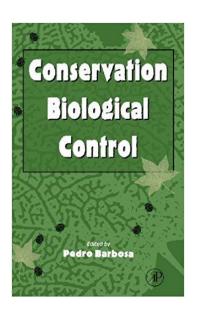


European Regional Development Fund

Conservation biological control for the management of exotic forest pests



Conservation Biological Control: Definition

Pests can be biologically controlled by two ways.

First, by <u>importing</u> **exotic natural enemies** that destroy pests = **classical** biological control

Second, by <u>conserving</u> the **native natural enemies** of the pests that are already there or are readily available = **conservation** biological control

Conservation Biological Control: Concept

Habitat manipulation to enhance native natural enemies

So that they are sufficiently abundant and locally present to effectively control new pests

By providing:

- Alternate feeding resources: other prey (predators) or hosts (parasitoids)
- Complementary feeding resources: pollen, nectar, honeydew (for adult parasitoids)
- **Shelter** for protection against adverse weather conditions, super predators (spiders), hyper parasitoids, for egg-laying, overwintering

Conservation Biological Control: Concept

The key condition:

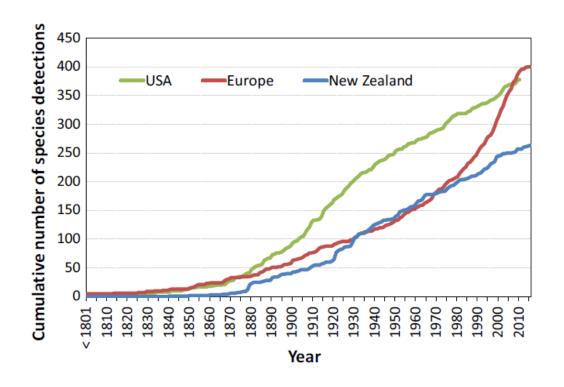
Native natural enemies need to be **generalists** enough to be able to shift onto the new (exotic) host or prey

More likely to occur when the new host or prey belongs to same family or feeding guild as the native hosts or prey

Conservation Biological Control: in agriculture

Flower strips

Intercropping

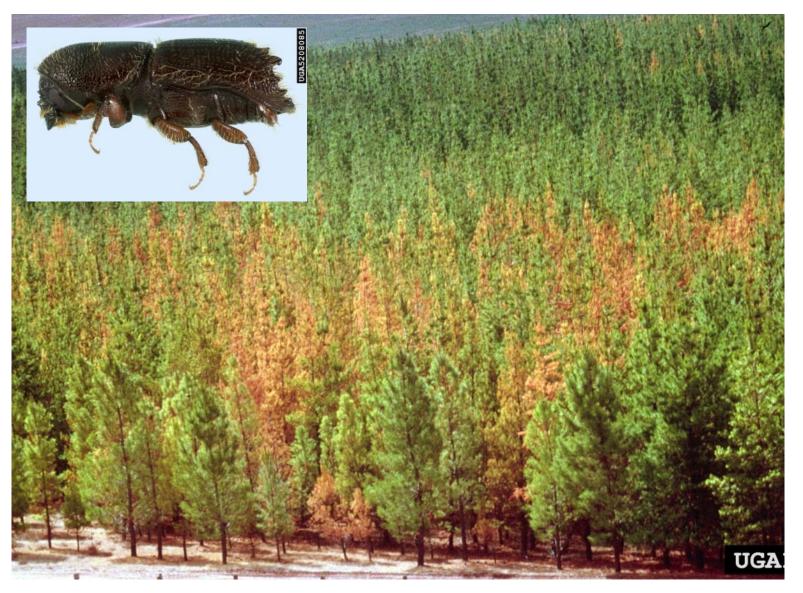

Hedgerows

Conservation Biological Control: in forest?

Ecology of forest insect invasions

E. G. Brockerhoff · A. M. Liebhold

Web of Science


« conservation biological control »

« conservation biological control » AND « forest pest»

= 632 references

= 1 reference

Monocultures more invasible than mixed forests?

Ips grandicollis outbreak on Pinus radiata in Australia

Does tree diversity drive resistance to invasive forest insects?

Conservation Biological Control in forest?

Diversity drives resistance to (native) forest pests

Ecology Letters, (2007) 10: 835-848

doi: 10.1111/j.1461-0248.2007.01073.x

LETTER

Tree diversity reduces herbivory by forest insects

Hervé Jactel¹* and Eckehard G. Brockerhoff²

Journal of Applied Ecology 2014, 51, 134-141

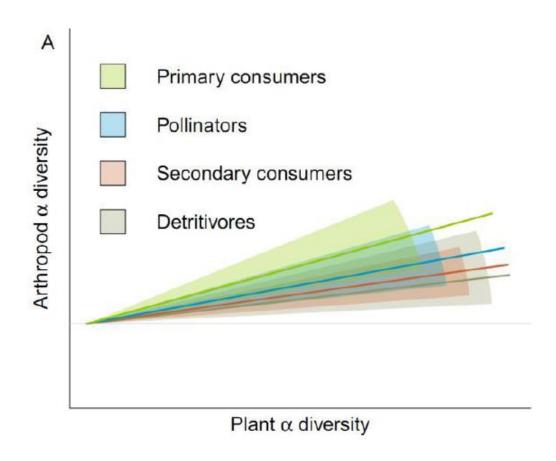
doi: 10.1111/1365-2664.12175

Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization

Bastien Castagneyrol^{1,2,3*}, Hervé Jactel^{1,2}, Corinne Vacher^{1,2}, Eckehard G. Brockerhoff⁴ and Julia Koricheva³

Tree Diversity Drives Forest Stand Resistance to Natural Disturbances

Hervé Jactel¹ • Jürgen Bauhus² • Johanna Boberg³ • Damien Bonal⁴ • Bastien Castagneyrol¹ • Barry Gardiner⁵ • Jose Ramon Gonzalez-Olabarria⁶ • Julia Koricheva⁷ • Nicolas Meurisse⁸ • Eckehard G. Brockerhoff⁹


... but little evidence of resistance against non-native pests

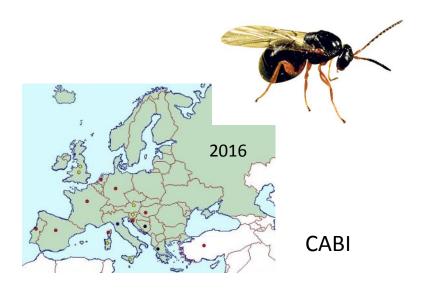
Mechanisms? How does biodiversity confer associational resistance?

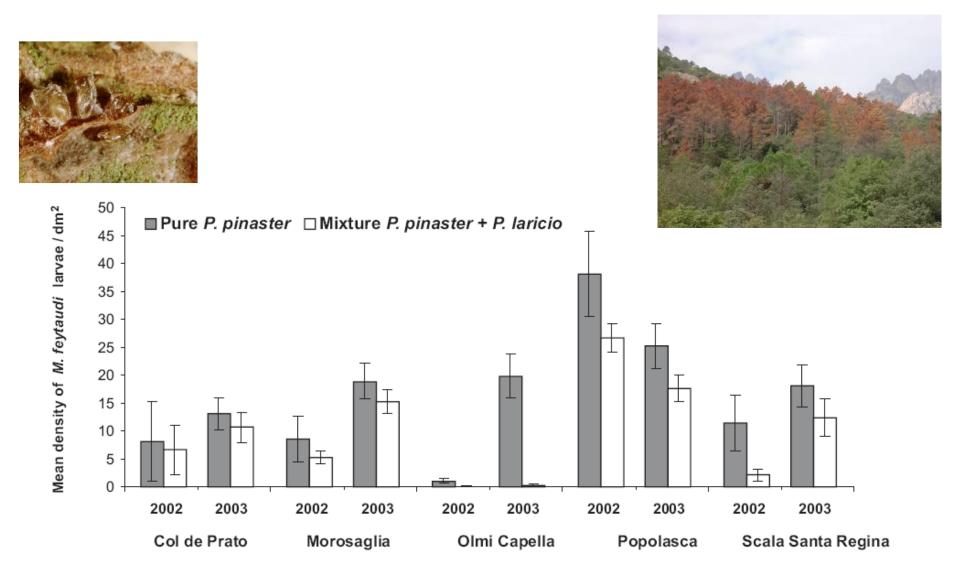
- 1. Diversity reduced abundance of host trees
- 2. Diversity reduces physical or chemical detectability of host
- 3. Diversity enhances <u>activity of natural enemies</u> of pests
 - more insect predators, parasitoids, insectivorous birds
 - = conservation biological control mechanisms

Unraveling plant—animal diversity relationships: a meta-regression analysis

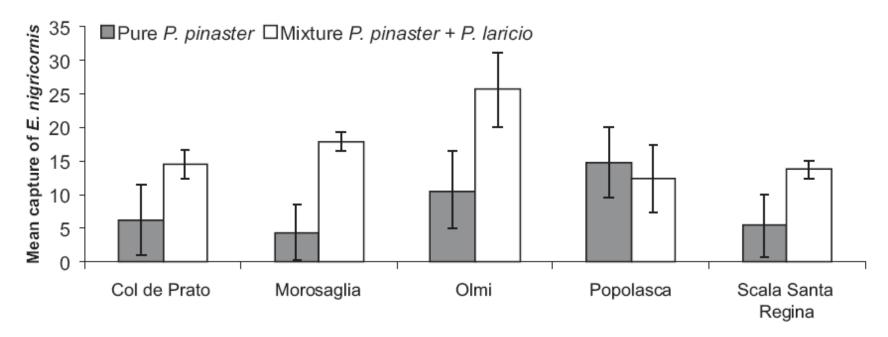
BASTIEN CASTAGNEYROL¹ AND HERVÉ JACTEL

Two well studied invasive forest pests in Europe


Maritime pine bast scale Matsucoccus feytaudi

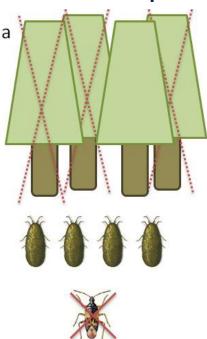

Asian chestnut gall wasp Dryocosmus kuriphilus

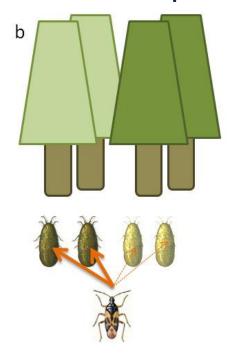
Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae)¹


H. Jactel, P. Menassieu, F. Vetillard, A. Gaulier, J.C. Samalens, and E.G. Brockerhoff

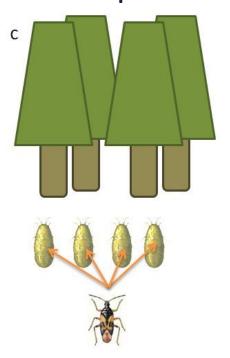
Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, *Matsucoccus feytaudi* (Homoptera: Margarodidae)¹

H. Jactel, P. Menassieu, F. Vetillard, A. Gaulier, J.C. Samalens, and E.G. Brockerhoff




Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae)¹

H. Jactel, P. Menassieu, F. Vetillard, A. Gaulier, J.C. Samalens, and E.G. Brockerhoff


Pure maritime pine stand

Mixed stand of pines

Pure black pine stand

Matsucoccus feytaudi

Matsucoccus Elatophilus pini

nigricornis

Tree Diversity Limits the Impact of an Invasive Forest Pest

Virginie Guyot^{1,4}*, Bastien Castagneyrol^{3,4}, Aude Vialatte^{1,2}, Marc Deconchat¹, Federico Selvi⁵, Filippo Bussotti⁵, Hervé Jactel^{3,4}

Biol Invasions https://doi.org/10.1007/s10530-017-1637-4

ORIGINAL PAPER

Plant neighbour identity and invasive pathogen infection affect associational resistance to an invasive gall wasp

Pilar Fernandez-Conradi · Nicolas Borowiec · Xavier Capdevielle · Bastien Castagneyrol · Alberto Maltoni · Cécile Robin · Federico Selvi · Inge Van Halder · Fabrice Vétillard · Hervé Jactel

Chestnut Asian gall wasp

Dryocosmus kuriphilus

Contents lists available at ScienceDirect

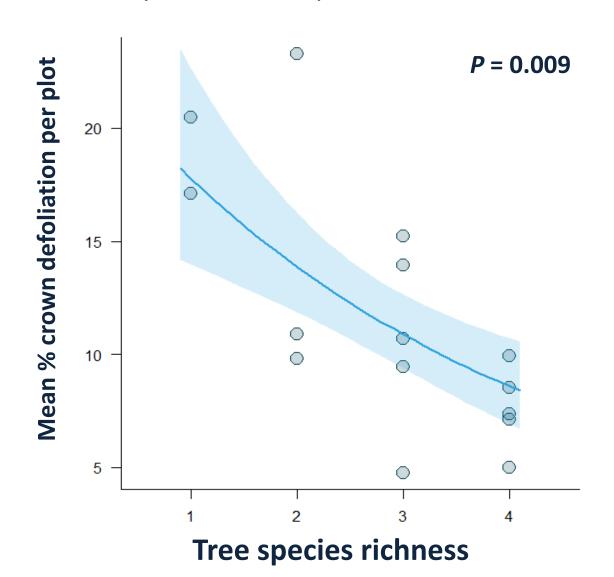
Perspectives in Plant Ecology, Evolution and Systematics

journal homepage: www.elsevier.com/locate/ppees

Forum

A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests

Crown damage assessment = % foliar loss



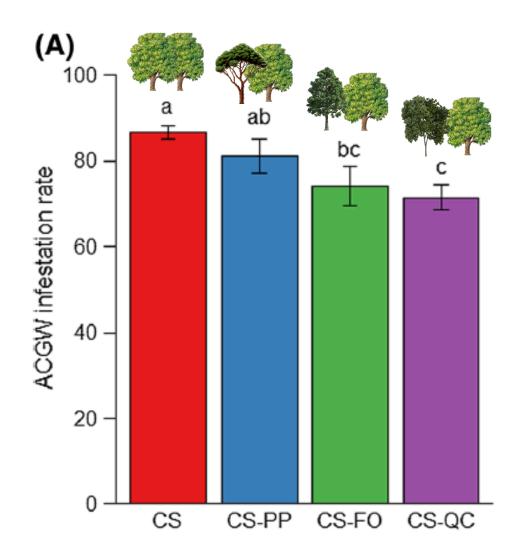
Explanatory variables

- tree species richness
- proportion of chestnut trees / plot

Results at the plot scale

100% of sampled chestnut trees attacked by *D. kuriphilus*. Foliar loss = 13 ± 8 % (0.8% - 31.1%)

Natural chestnut stands (Italy)


- Monospecific
- chestnut-oak CS-
- chestnut-pine
- chestnut-ash

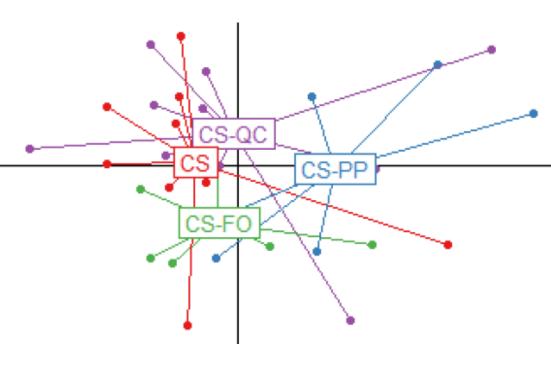
CS

CS-QC

CS-PP

CS-FO

Fig. 1 Mean ACGW infestation rate per chestnut tree as a function of, a tree species composition and b chestnut frequency


9 600 galls spring > 809 parasitoids (mean: 8 per 100 galls)

22 native parasitoid species

Torymus flavipes / oak galls

CONCLUSIONS

- 1. Promising results for conservation biological control of invasive forest pests with increased tree diversity
- 2. But we were lucky: similar hosts (two scale insects of the same genus, two gall makers of broadleaved trees) AND presence of generalist enemies able to shift onto new prey (predatory bug) or new host (parasitoid wasp)
- 3. More difficult cases = ex. Box tree moth (no native chewers)?
- 4. We need more research!

