

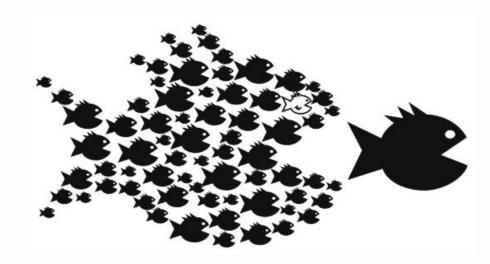
Pine wood nematode PWN

Bursaphelunchus xylophilus

Insect vector

Pine sawyer beetle (PSB) Monochamus galloprovincialis

E. Sousa, P. Naves, L. Bonifacio, J. Casado, J.C. Samalens, T. Ferreira E. Mauri, C. Orazio, H. Jactel



EFIATLANTIC

Process of collective action

- **Objective**: Defining research priorities to improve PWN risk management
- Method: Dialogue between scientists and tree health managers
 - Stakeholders' needs and expectations
 - Scientist's knowledge and vision
 - Transboundary cooperation

through interviews and workshops

Research priority for PWN risk management

Early warning detection in areas at risk

• 2 methods to be improved:

- 1. Field detection of symptomatic trees
 - Official method (EU regulation)
 - Often few and isolated
 - Non-specific symptoms
- 2. Pheromone trapping of insect vectors
 - Recommended by EU regulation
 - Where ? Defining priority areas of deployment
 - How many (cost)? Optimizing the density of traps

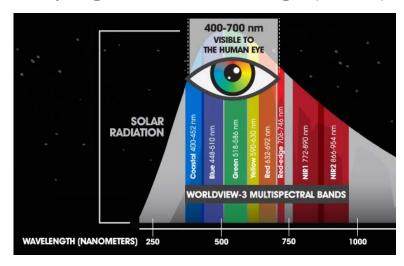
WHEN YOU PRIORITIZE, All the Importantstuff Gets done.

1.1. Use of satellite images

Pros

- Cover large areas
- Easy to program and obtain
- Large array of satellites
 w. various image resolution and colors

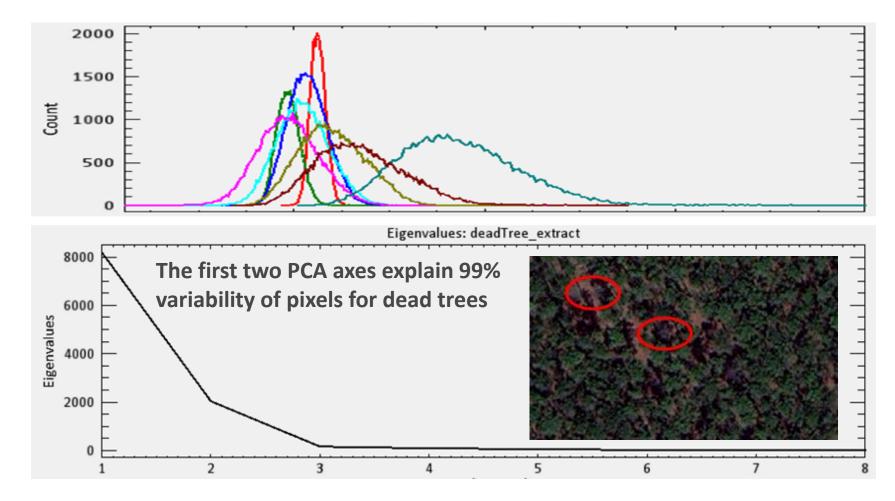
Cons


- Size of the pixel > individual tree crown area
- Weather conditions
- Image cost

1.1. Use of satellite images

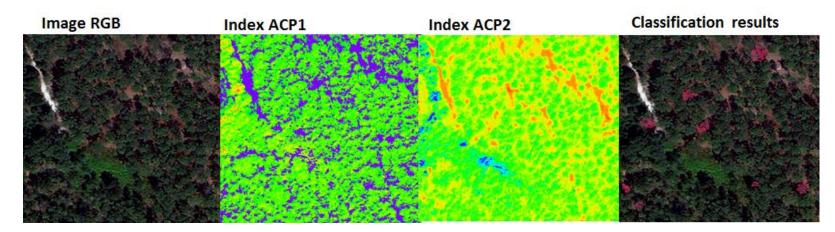
Experiment

Nazaré Pine Forest WorldView satellite Very high resolution image (31cm)



1.1. Use of satellite images

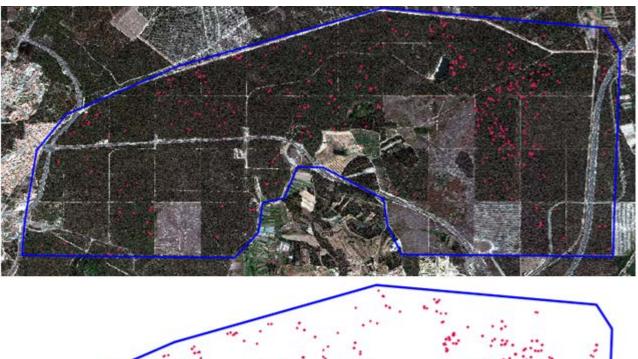
Identification of specific spectral combination (PCA) for symptomatic trees observed in the field in August

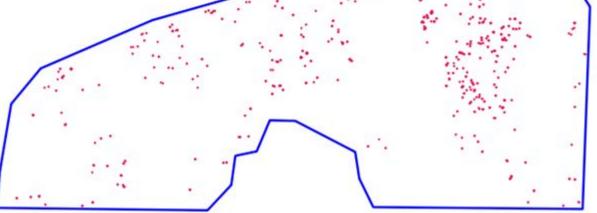

Experiment

1.1. Use of satellite images

Experiment

1.1. Use of satellite images




Observation	Defoilation	Date of wood sample	PWN presence
canopy partially redish	2	17-nov	Negative
all canopy brown	3	17-nov	Negative
dead with few needles attached	4	17-nov	Positive
dead with few needles attached	2	17-nov	Positive
dead with few needles attached	4	17-nov	Positive
dead with few needles attached	4	17-nov	Positive
dead with few needles attached	3	17-nov	Positive
all canopy brown	3	17-nov	Positive
all canopy brown	3	17-nov	Positive
canopy partially redish	2	17-nov	Positive
dead with few needles attached	3	17-nov	Positive
dead with few needles attached	3	17-nov	Positive
all canopy brown	3	17-nov	Positive
canopy partially redish	2	17-nov	Positive
dead with few needles attached	4	17-nov	Positive
dead with few needles attached	4	17-nov	Positive
dead with few needles attached	4	17-nov	Positive
dead with few needles attached	4	17-nov	Negative
all canopy brown	3	17-nov	Positive
dead with few needles attached	4	17-nov	Positive
all canopy brown	3	17-nov	Positive
all canopy brown	3	17-nov	Positive
all canopy brown	3	17-nov	Positive
all canopy brown	3	17-nov	Positive
dead with few needles attached	4	17-nov	Positive

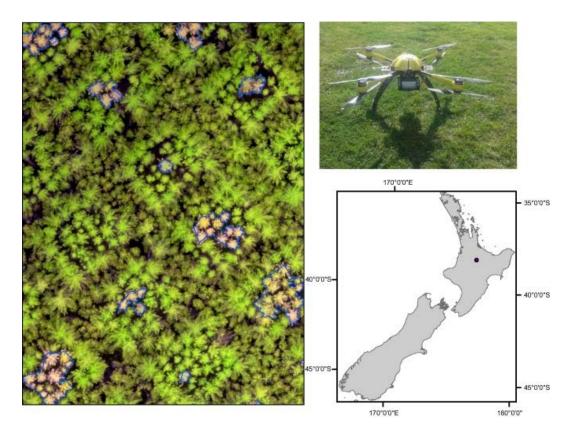
- The 13 dead trees detected on August satellite images were also inventoried in the field in November
- Obviously, no difference were found between dead trees damaged or not by PWN
- No particular spectral signature could be identified for the early detection of PWN symptoms
- No omission and no over detection of isolated dead trees -> promising results

1.1. Use of satellite images

437 isolated dead trees could be further mapped at larger scale (ca. 1500ha)

1.2. Use of drone (UAV) images

Pros


- Accuracy (small pixels)
- Hovering flights
- Embarked multi/hyperspectral cameras

Cons

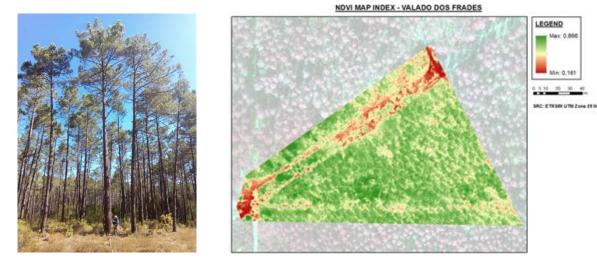
- Cover small areas
- Weather conditions
- Experienced pilots

Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak

Jonathan P. Dash^{a,*}, Michael S. Watt^b, Grant D. Pearse^a, Marie Heaphy^a, Heidi S. Dungey^a

1.2. Use of drone (UAV) images

Experiment


<u>Site</u>

Mata Nacional Vimeiro. Valado dos Frades Area: 6 ha Pinus pinaster Age: 49-67 years, height 25 m

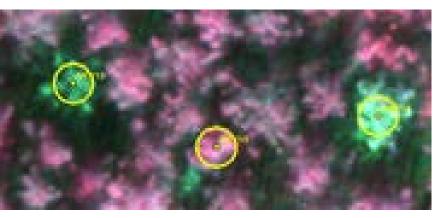
<u>Remote sensing</u> (December 2017): TRAGSATEC Platform: eBee drone Multispectral camera red-edge (IR) Vegetation index, Individual crown segregation

Field survey (December 2017): INIAV

Symptomatic trees Presence of PWN (at the lab)

1.2. Use of drone (UAV) images

Experiment



20 trees: 9 asymptomatic
+ 11 symptomatic (9 PWN infected)
10 trees to build the model
10 trees to test the prediction

Model

cct in chlorophyll_a as predictor of tree physiological status
< 1mg/g chloro_a as threshold for decay
cct chloro_a estimated with red edge absorption RE
Logistic regression: infected vs. not infected = f(RE)</pre>

Model testing: 100% true positive symptomatic 100% true negative asymptomatic

2.1. Current strategy

Standardized pheromone trapping system

SEDQ Healthy crops in our hands

FABRICANTE Y PROVEEDOR: **SEDQ** Sociedad Española de Desarrollos Químicos S.L.

Galloprotect Pack Use in mass trapping of the pine sawyer Monochamus galloprovincialis

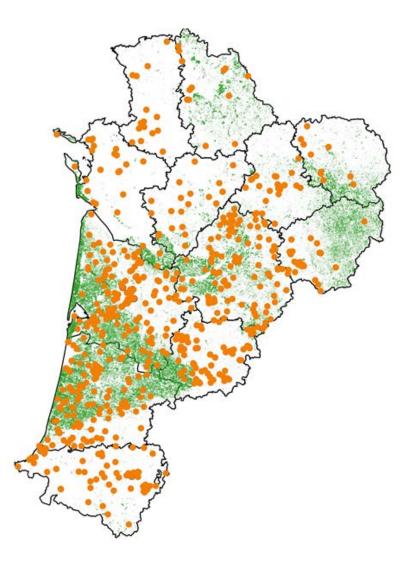
JOURNAL OF APPLIED ENTOMOLOGY

J. Appl. Entomol.

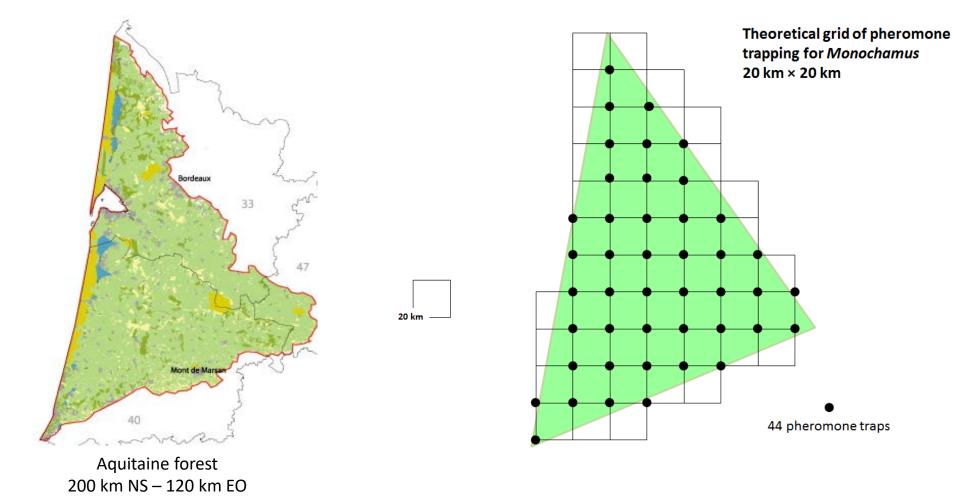
ORIGINAL CONTRIBUTION

Combining pheromone and kairomones for effective trapping of the pine sawyer beetle *Monochamus galloprovincialis* G. Álvarez¹, D. Gallego², D. R. Hall³, H. Jactel^{4,5} & J. A. Pajares¹

A novel, easy method for estimating pheromone trap attraction range – Application to the pine sawyer beetle, Monochamus galloprovincialis


Herve Jactel ^{1*}, Luis Bonifacio ², Inge van Halder ¹, Fabrice Vétillard ¹, Christelle Robinet ³, Guillaume David ^{1,4}

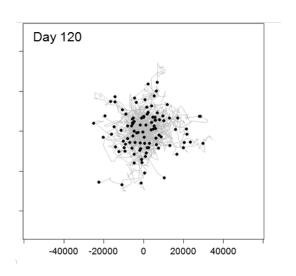
Effective attraction radius = 100m


2.1. Current strategy

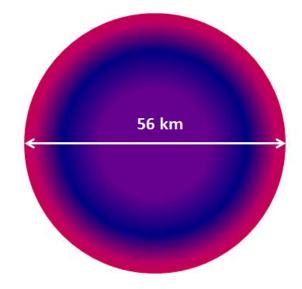
Focus on areas at risk: Burnt or wind damaged forests Along main roads, wood truck parks, ports wood factories, sawmills, warehouses...

But only 20 traps for Aquitaine, to cover 1 million ha (1 trap / 50 000 ha, r=12km) with permutations

2.2. Improved strategy: systematic grid of traps

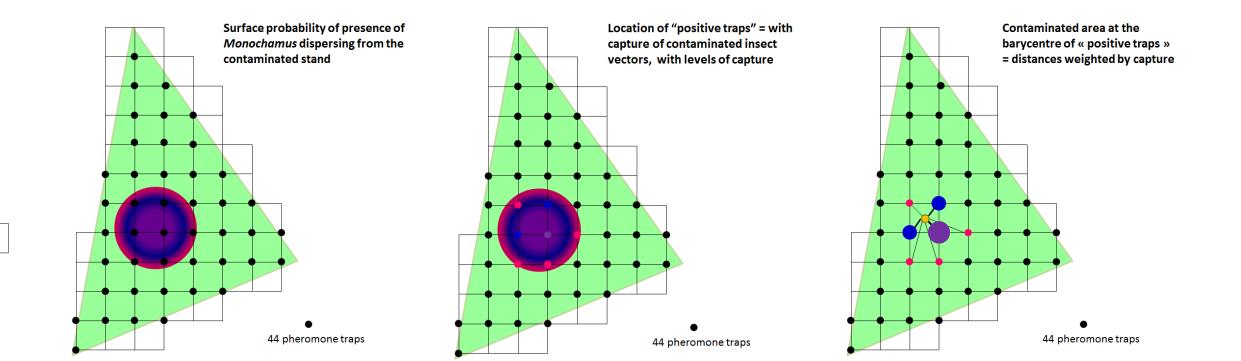


2.2. Improved strategy: systematic grid of traps

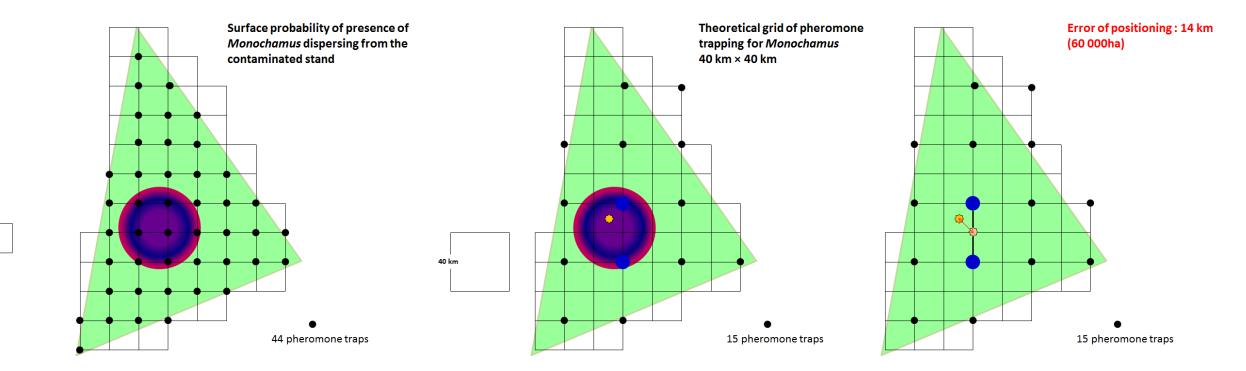

Modelling the distances travelled by insects based on flight mill and mark-release-recapture experiments. (submitted) Christelle Robinet^{a*}, Guillaume David^{b,c}, Hervé Jactel^b

Radius 28 km

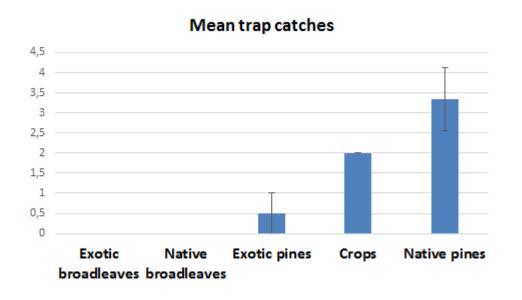
3D representation of frequency distribution of flying distances from the contaminated area

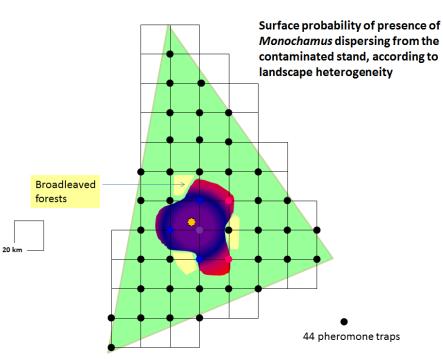

2D representation of frequency distribution of flying distances from the contaminated area

Mean dispersal distance = 13 km


2.2. Improved strategy: systematic grid of traps

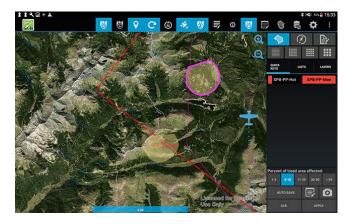
20 km




2.2. Improved strategy: systematic grid of traps

20 km

2.2. Improved strategy: systematic grid of traps

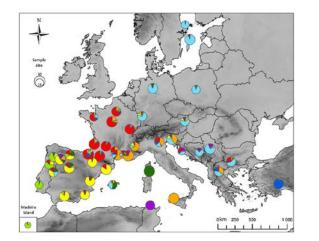

Next steps in PWN risk management

Remote sensing of PWN infected trees

- Confirm the prediction model with drone hyperspectral images
- Test more accurate satellite images
- Investigate aircraft or helicopter sketch mapping of PWN symptomatic trees

Digital Mobile Sketch Mapping (DMSM)

 Develop automatic image analyses to identify spatiotemporal patterns of PWN induced tree decline


Next steps in PWN risk management

• Pheromone trapping of the insect vector

- Refine the individual-based dispersal model of *Monochamus*, in realistic landscapes
- Apply the model to optimize a systematic grid of traps
- Discuss with tree health managers about implementation of systematic grid of traps (pre vs. post detection in risk areas)
- Develop DNA bar coding for identifying the geographical origin of trapped beetles

Phylogeography of *Monochamus galloprovincialis*, the European vector of the pinewood nematode

Julien Haran 1,2,3 · Jérôme Rousselet 1 · David Tellez 1,2 · Alain Roques 1 · Géraldine Roux 1,2

A big thank to our associated partners!

Region	Organisation	Contact person	Associated partners
Portugal	INIAV	Edmundo Sousa	Altri Florestal Instituto da Conservação da Naturesa e das Florestas
			RAIZ - Instituto de Investigação da Floresta e Papel
Castilla y Leáon	TRAGSATEC	Jorge Casado	Junta de Castilla y León Empresa de Transformación Agraria
Aquitaine	INRA	Hervé Jactel	Caisse de Prévoyance et de Protection des Forêts du Sud-Ouest
			Direction régionale de l'alimentation, de l'agriculture et de la forêt
			Association Régionale de Défense des Forêts Contre l'Incendie

